Adenine N(1)-Oxide Complexes with First Row Transition Metal Perchlorates*

CHESTER M. MIKULSKI, RANDOLPH DE PRINCE, THU BA TRAN Department of Chemistry and Physics, Beaver College, Glenside, Pa. 19038, U.S.A.

FRANK J. IACONIANNI, LOUIS L. PYTLEWSKI

Department of Chemistry, Drexel University, Philadelphia, Pa. 19104, U.S.A.

ANTHONY N. SPECA

USI Chemicals Co., Cincinnati, Ohio 45237, U.S.A.

and NICHOLAS M. KARAYANNIS**

Amoco Chemicals Corporation, Naperville, Ill. 60566, U.S.A.

Received May 13, 1981

A series of adenine N(1)-oxide (LH) complexes with 3d metal perchlorates were prepared by refluxing mixtures of ligand and salt in ethanol-triethyl orthoformate. Characterization studies revealed significant differences in ligand binding sites and probable complex structural types, with metal ion variation. Thus, $[Cr(LH)_2(OClO_3)_2(EtOH)_2](ClO_4)$ and $[M(LH)_2(OClO_3)(EtOH)_2](ClO_4)$ (M = Mn, Zn) seem to be monomeric with unidentate, imidazole nitrogen-bonded (most probably N(7)) LH, while the Co^{2+} analogue of the latter two complexes is apparently a linear polymer, with single bridges of bidentate O(1), N(7)-bonded LH, as well as terminal unidentate imidazole nitrogen-bonded ligand groups. The rest of the complexes involve both neutral LH and anionic L^{-} ligands. The subnormal room temperature magnetic moment of the Cu^{2+} complex (1.68) μB) favours a triple ligand-bridged structure of the $[(O_3ClO)Cu(LH)L_2Cu(OClO_3)]$ type, with O(1), N(7)-bonded bridging ligands. Ni(LH)L(ClO₄)•2EtOH and $Fe(LH)_2L(ClO_4)_2$ were considered as linear polymers, with single bridges of O(1), N(7)-bonded adenine N(1)-oxide ligands; the rest of the ligands present seem to be terminal, unidentate imidazole nitrogen-bonded for $M = Ni^{2+}$ and bidentate chelating, O(1), N(6)-bonded for $M = Fe^{3+}$.

Introduction

A number of studies of adenine N(1)-oxide (adH-NO or LH; 1) metal complexes have been reported in the past [2, 3]. Studies of CuL₂ or LH complexes with various CuX_2 salts (X = Cl, ClO₄, $\frac{1}{2}SO_4$) [2] and stability constant investigations of the corresponding complexes with first row transition M^{2+} ions (M = Mn through Zn) [3], led to the conclusion that neutral LH or the deprotonated anionic L⁻ ligand functions as bidentate, coordinating through the NH₂ (or =NH in the deprotonated form) and N(7) nitrogen atoms, without any involvement of the N(1)-Ooxygen in coordination [2, 3]. However, the corresponding nucleoside, adenosine N(1)-oxide, was considered as having the tendency to chelate through the N(1)-O oxygen and the NH₂ nitrogen [3-6], but it was also independently concluded that the most favoured binding site of this ligand is the N(7) nitrogen [7, 8]. Following our recent studies of purine complexes with 3d metal chlorides [9] and perchlorates [10] and adenine complexes with 3d metal perchlorates [11], it was of interest to us to extend our work to the complexes of the corresponding N-oxide ligands [1]. Studies of the coordination chemistry of purine N-oxides would be of interest not only from the purely inorganic chemical standpoint, but also in view of the established oncogenic activity [12] of these ligands. In a preliminary communication we presented the results of our synthetic and characterization studies of well-defined, solid adenine N(1)-oxide complexes with Co²⁺, Ni²⁺ and Cu²⁺ perchlorates [13]. All three of these complexes have been found to contain N(1)-O oxygen-bonded LH or L⁻ ligands [13]. Now our studies in this direction have been completed and are reported in the present paper, which deals with the preparation and characterization of several 3d metal perchlorate ($M = Cr^{3+}, Mn^{2+}, Fe^{3+},$ Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+}) complexes with adenine N(1)-oxide.

^{*}Ref. 1.

^{**}Author to whom correspondence should be addressed.

Complex	Colour	Analysis, Found (Calcd.) %				
		С	Н	N	М	Cl
Cr(LH) ₂ (ClO ₄) ₃ ·2EtOH	Dark green ^a	22.8	3.3	19.05	6.8	14.2
		(22.6)	(3.0)	(18.8)	(7.0)	(14.3)
Mn(LH) ₂ (ClO ₄) ₂ ·2EtOH	Beige	26.2	3.4	21.7	8.7	11.2
		(25.9)	(3.4)	(21.6)	(8.5)	(10.9)
$Fe(LH)_2 L(ClO_4)_2$	Maroon	25.8	1.7	29.5	8.2	10.3
		(25.5)	(2.0)	(29.7)	(7.9)	(10.0)
Co(LH)2(ClO4)2 · 2EtOH	Brick red	25.4	3.65	21.55	8.9	11.2
		(25.8)	(3.4)	(21.5)	(9.0)	(10.9)
Ni(LH)L(ClO ₄)•2EtOH	Light green	30.1	3.7	25.8	10.7	6.8
	_ 0 0	(30.5)	(3.8)	(25.4)	(10.6)	(6.4)
$Cu_2(LH)L_2(ClO_4)_2$	Olive green	22.9	1.9	26.75	16.4	9.6
		(23.2)	(1.7)	(27.0)	(16.3)	(9.1)
Zn(LH) ₂ (ClO ₄) ₂ ·2EtOH	Pale grey-green	25.9	3.1	20.9	9.5	10.5
		(25.5)	(3.4)	(21.3)	(9.9)	(10.8)

TABLE I. Analyses of Adenine N(1)-Oxide (LH) Complexes with 3d Metal Perchlorates.

^aAlmost black.

Experimental

Synthetic Procedures

Reagent grade adH-NO (Aldrich), hydrated metal perchlorates and organic solvents were generally used. 1.4 mmol metal perchlorate is dissolved in a mixture of 15 cm³ triethyl orthoformate (teof) and 35 cm³ absolute ethanol. Then, 2.5 mmol adH-NO are added, and the mixture is refluxed for 48 hr. After 2-5 hr of refluxing, precipitates begin forming in all but one $(M = Cr^{3+})$ cases, and their quantities gradually increase as refluxing continues. As already mentioned [13], in two cases ($M = Ni^{2+}, Cu^{2+}$) precipitates differing in colours from those of the final products start forming at the early stages of refluxing; these precipitates are eventually dissolved in the mother liquor and replaced by the green-coloured final precipitates. After 48 hr of refluxing, the volume of the reaction mixture is reduced to about one-half the original volume. The solid new complexes $(M = Mn^{2+})$ Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺) are then separated by filtration, washed with anhydrous diethyl ether and stored in vacuo over anhydrous CaCl₂. With Cr³⁺ a green oily precipitate is obtained after refluxing and reduction of the volume of the mother liquor (heating under reduced pressure). The supernatant is then decanted and the oily product is mixed with 10 cm³ anhydrous diethyl ether, the mixture is stirred, the ether layer is then allowed to separate and is subsequently decanted; this type of treatment is repeated 4-5 times. Finally, the oily Cr³⁺ complex is stored

in vacuo over anhydrous CaCl₂. This product gradually solidified after 1–2 months' storage in the desiccator. Elemental analyses (C, H, N, Cl by Schwarzkopf Microanalytical Laboratory, Woodside, New York: metals by atomic absorption spectroscopy) are given in Table I. The yields of the new complexes (% of the theoretical) obtained by the above synthetic method were: $M = Cr^{3+} 20$; Mn^{2+} 72; $Fe^{3+} 39$; $Co^{2+} 72$; $Ni^{2+} 56$; $Cu^{2+} 55$; $Zn^{2+} 52$.

Spectral and Magnetic Studies

Infrared spectra of the ligand and the new metal complexes (Table II) were recorded on Nujol and hexachloro-1,3-butadiene mulls between NaCl windows (4000-500 cm⁻¹) and on Nujol mulls between high-density polyethylene windows (700-200 cm⁻¹), in conjunction with a Perkin-Elmer 621 spectrophotometer. Solid state (Nujol mull) electronic spectra and ambient temperature (300 K) magnetic susceptibility measurements were obtained by methods described elsewhere [14] (Table III).

Results and Discussion

Type of Complexes Synthesized

Table I shows the stoichiometries of the new metal complexes, along with analytical data. In most of these compounds the adenine N(1)-oxide to metal molar ratio is 2:1 (Cr^{3+} , Mn^{2+} , Co^{2+} , Ni^{2+} , Zn^{2+}); all these complexes are also characterized by the presence of two ethanol ligands. On the other hand, the Fe³⁺ and Cu²⁺ complexes involve 3:1 or 3:2 ligand to metal ratios and are EtOH-free. The Cr³⁺, Mn²⁺, Co²⁺ and Zn²⁺ complexes contain exclusively neutral LH ligands (*i.e.*, Cr(LH)₂(ClO₄)₃·2EtOH and M(LH)₂(ClO₄)₂·2EtOH (M = Mn, Co, Zn)). In contrast, Fe(LH)₂L(ClO₄)₂, Ni(LH)L(ClO₄)·2EtOH and

						WI ~ 711	Danu assignment
	3370m.b		3330m,b	3360m,b		3345m,b	v(OH) (EtOH)
_	2710w, 2680w	2770w,sh	2715w, 2675w	2720w, 2660w	2715w, 2655w	2710w,b	(HN)
	1680s	1699s, 1631ms	1670s	1660ms	1656ms	1675s,b	NH ₂ defomration ^b
1610m	1639w, 1610w	1611m	1635w, 1608m	1640w, 1611m	1614m	1642m, 1609m	A' pym (8a) + δ(OH)
	1566m	1564m	1557m,b	1555m,b	1570m	1561m	А' рут (8b)
						1489m)	A' im (R ₁) +
	1490w	1485vw	1483m	1490m	1486m	1471m,sh	A' pym (19b) +
q	1447m	1451vw	1450m	1452m	1450w	1450bw	A' im (R ₂)
		1413mw			1402mw	-	A' im (R_3) +
ď,	1390ms,b		1386ms,b	1382ms,b		1393ms,b {	8 (CH)(EtOH) +
		1370w			1367w	-	A' pym (19a)
	1345w	1339w	1350w	1340w	1343w	1338w)	A' pym (14) +
ď.	1302w.b	1299w.b	1297w.b	1303w.b	1309w	1304w.b	A' im (R4) +
Ł					1299w	~ ~	NH2 wag NH2 def. ^b + A' im (NH)
h wa	1 7 7 1 m h	1361	1 7 3 me	1 2 7 Our		1270m h	
0,w.	12,111,0 1237m.b	1227m	1238ms	1270w 1236m	1248m	1236ms,b	
•		1191s	1195ms,b	1198s	1199s		
	J	v	Ù	v	v	J	NH ₂ wag + twist
	IJ	Ð	J	1010w	1010m	v	A' (R)
vs, 1085	1150vs, 1095	1075vs,b	1137vs, 1095	1100vs,b,	1092vvs,	1150s, 1080	$\nu_{3}(CO_{4})$
051vs	vvs, 1050vs		vvs, 1052vs,b	1045 vs, sh	1056vs	vs,b, 1047 vs	
	1041vs,sh		1037vs,sh	1035s,sh		IJ	s (CH)(EtOH)
	960m	963m	969m	968m	970w, 949m	965m	NH_2 def. ^D + A' (R) +
ď,	927m,b	914m,b	930m,b	931m,b	922m	928m,b	$\mathbf{A}'' \ \gamma(\mathrm{CH}) + \nu_1(\mathrm{CIO}_4)$
×	720ms	724w, 699w	720ms	721ms	722ms	714m	NH2 defomation ^b
	IJ	648w,sh	U	U	U	v	A' (R)
, 632m,	640m, 628m,	621ms	641w, 628m,	619m, 611m	632m, 614m	639w, 626m,	v4(ClO4)
	620m		621m,sh			618m	
		446m,b	361w	377m	461s, 421m,sh		ν (M $-$ O) (N-oxide)
	368m		347w,b	355mw		345m	<i>w</i> (M−O) (EtOH)
	316m		307w,b	312w,b	372ms	310m,b	$\nu(M-O) (-OCIO_3)$
	272w	270m,b	255w, 232w	258w, 234w	319m, 302m,	264w	v(M-N)

TABLE II. Selected Regions of the Infrared Spectra of Adenine N(1)-Oxide (LH) and its Complexes with 3d Metal Perchlorates, cm⁻¹.

^a Band assignments for free LH based on works dealing with ir spectra of purine, adenine, their metal complexes and various N-oxides [9-11, 13, 16-20]; purine band assignments after Lautié and Novak [16] (pym = pyrimidine; im = imidazole; R = ring skeletal vibration); NH₂ band assignments from refs. 17 and 18. ^bNH₂ deformation modes of LH: symmetric in-plane 1663; asymmetric out-of-plane 1272-1240 region; symmetric out-of-plane 940; asymmetric in-plane 721 cm⁻¹ [17, 18]. ^cMasked by other absorption. ^dMain bands of LH at 550-200 cm⁻¹: 530m, 488m, b (masking ν_2 (ClO₄) in the spectra of the complexes), 446w,sh, 422vw, 403vw, 532vw, 330vw, 290vw, 281vw, 269vw, 247vw, 230 vw,vb.

Complex	blex $\lambda_{max}, nm^{a,b}$		μ _{eff} , μΒ
Cr(LH) ₂ (ClO ₄) ₃ ·2EtOH	242vs, 278vs, 292vs, 315vs, 337vs, 462s,sh,	6191	3.86
	550ms,vb, 602m,sh, 650w,sh, (935w,sh, 1350w,vb)		
$M_n(LH)_2(ClO_4)_2 \cdot 2EtOH$	208vvs,sh, 247vs,sh, 267vs, 303vvs,b, 375ms,b 14,802		5.96
	455m,sh, 560w,sh, (940w,b, 1370w,b)		
$Fe(LH)_2L(ClO_4)_2$	220vs, 245vs,sh, 266s,sh, 280s, 313vs,sh, 360ms,b,	15,022	6.01
	475m,vb, (970w, 1345w)		
Co(LH) ₂ (ClO ₄) ₂ ·2EtOH	219vvs, 240vvs,sh, 257vvs,b, 283vvs,b, 320vs,sh, 375s,sh,	10,930	5.13
	468m, 512m, 900w,sh, (965w,b), 1300w,b, (1350w,sh)		
Ni(LH)L(ClO ₄)•2EtOH	214vvs, 235vvs, 264vs, vb, 278vs, sh, 313s, sh, 395s,	4600	3.33
	625m, 747m, (950w), 1025w,b, 1265w,b, (1360w,sh)		
$Cu_2(LH)L_2(ClO_4)_2$	225vvs, 255vvs,b, 283vvs,b, 318vvs,b, 380s,sh,	1174	1.68
	617s,sh, 660s,b, (960w, 1350w,b)		
$Zn(LH)_2(ClO_4)_2 \cdot 2EtOH$	215vvs, 243s, 281s,sh, 308vs, 367m,sh, (950w,b, 1375w)	Diamagnetic	

TABLE III. Solid-state (Nujol mull) Electronic Spectra and Ambient Temperature (300 K) Magnetic Properties of Adenine N(1)-Oxide (LH) Complexes with Metal Perchlorates.

^aReported spectrum of the free ligand at pH 7: 231, 262.5 nm [39]. ^bNear-ir bands, common in the spectra of all the metal complexes, and apparently due to vibrational overtones and combination bands originating from adenine N(1)-oxide [31] are shown in parentheses; near-ir bands of uncomplexed adH-NO, nm: 960vw, 1355vw.

 $Cu_2(LH)L_2(ClO_4)_2$ are characterized by the presence of both neutral LH and monodeprotonated anionic L⁻ ligands. It was previously mentioned that, during the preparation of the Ni^{2+} and Cu^{2+} complexes, small amounts of precipitates, differing in colour from the finally isolated solids, were formed after 1-2 hr of refluxing (see Experimental; colours of early precipitates: golden orange for M = Ni; maroon for M = Cu). These precipitates were eventually dissolved in the mother liquor, upon continuation of refluxing, and were finally replaced by the greencoloured complexes shown in Table I [13]. The above early products are most probably analogues of the new Mn^{2+} , Co^{2+} and Zn^{2+} complexes, *i.e.*, of the $M(LH)_2(ClO_4)_2 \cdot xEtOH$ type (M = Ni, Cu). We have not managed as yet to isolate sufficient quantities of these two intermediates for characterization. During the preparation of the Fe³⁺ complex, no formation of any intermediate precipitate was observed. It should be also mentioned that, during attempts at the isolation of a Fe^{2+} complex with adenine N(1)-oxide, the Fe^{3+} complex of Table 1 was precipitated, even when we operated under inert conditions [15].

Among the complexes of Table I, those with Cr^{3+} , Mn^{2+} and Zn^{2+} show limited solubility in some organic solvents, such as N,N-dimethylformamide. The rest of the new complexes ($M = Fe^{3+}$, Co^{2+} , Ni^{2+} , Cu^{2+}) are generally insoluble in all common organic solvents. Finally, all of the new complexes are stable in the atmosphere.

Infrared Spectra

Selected regions of the ir spectra of the ligand and its metal complexes are given in Table II. Band assignments for free adenine N(1)-oxide were based on analogous assignments for purine [16], adenine [17, 18] and the N-oxides of various pyrimidines and other diazines [19-21]. Regarding the $\nu(N-O)$ mode, it has been quite often found to occur as a doublet in the spectra of diazine N-oxides [19-21], and it is not unlikely that more than one of the bands at 1272-1240 cm⁻¹ in the spectrum of free adH-NO have $\nu(N-O)$ character. The spectra of the new metal complexes in the same region $(1272-1190 \text{ cm}^{-1})$ are of particular interest. Thus, in the spectra of the new Cr³⁺, Mn²⁺ and Zn²⁺ complexes, the two main bands of the ligand $(1272, 1240 \text{ cm}^{-1})$ appear virtually unshifted; this indicates that the ligand does not coordinate through either the N(1)-O oxygen [22] or the NH₂ nitrogen [17, 18] in these three compounds. The non-participation of the NH₂ group in coordination in these complexes is also suggested by the positive frequency shifts of the NH_2 symmetric in-plane deformation mode, occurring at 1663 cm⁻¹ in free LH, and the relatively small shifts of the other two NH₂ deformation modes $(940-918 \text{ and } 721 \text{ cm}^{-1})$ [17]. The Co²⁺, Ni²⁺ and Cu²⁺ complexes also do not appear to involve ligands coordinating through NH₂, as they show similar to the preceding behaviour of the NH₂ deformation bands in their spectra. However, these complexes obviously contain N(1)-O oxygen-bonded adenine N(1)-oxide ligands, as shown by the occurrence of a strong band at 1199-1195 cm⁻¹, attributable to a shift of $\nu(N-O)$ to lower wavenumbers [22], in their spectra. It is rather well established that in the ir spectra of adenine metal complexes, no strong absorption at 1200-1190 cm⁻¹ is normally observed [17, 18, 23] (a single exception to

this is [Cu(adH)(ad)(phen)₂(OH)]₂·2H₂O, were adH = adenine and phen = 1,10-phenanthroline; this complex exhibits a strong band at 1196 cm^{-1} [18], but this absorption is certainly due to the phen [24] rather than the adenine ligands). Hence, the absorption at 1199-1195 cm⁻¹ in the spectra of the Co²⁺ Ni²⁺ and Cu²⁺ complexes can only arise by a shift of $\nu(N-0)$ to lower wavenumbers, owing to coordination of the ligand through the N-O oxygen [22]. The spectra of the Co²⁺ and Ni²⁺ complexes indicate that these compounds contain some N-O oxygen-bonded ligands and other adenine N(1)oxide ligands, that are not O-bonded (three distinct maxima at 1273-1270, 1238-1236 and 1198-1195 cm⁻¹) [22]; on the other hand, the Cu^{2+} complex shows only two bands at 1248 and 1199 cm⁻¹, and apparently contains exclusively O-bonded ligands [13, 22]. Finally, in the Fe³⁺ complex, all the ligands are also O-bonded (maximum at 1191 cm^{-1}). The behaviour of the NH₂ deformation bands in the spectrum of this compound is of particular interest; thus, all of these bands (i.e., at 1663, 1272–1240, 940–918 and 721 cm⁻¹ in free LH) are split, with the low wavenumber components corresponding to substantial negative frequency shifts, relative to their location in the spectrum of the free ligand. These features favour coordination of a part of the ligands through the NH₂ nitrogen [7, 11, 17, 25]. With respect to the ring nitrogens of the ligand, the presence of the ν (NH) absorption in the spectra of all the new complexes (2720-2655 cm⁻¹) ascertains that, at least part of the ligands, are in the neutral, protonated form [9-11, 15]. On the other hand, all the complexes appear to also involve coordination of adenine N(1)-oxide through one of the imidazole nitrogens (vide infra), as suggested by characteristic shifts of the A' im (R_1) and (R_3) bands [9, 10, 15].

As regards the rest of the ligands present in the new metal complexes, the i.r. evidence is as follows: the Fe³⁺ complex contains exclusively ionic perchlorate (single v_3 and v_4 (ClO₄) absorptions), but the rest of the complexes contain coordinated perchlorate, as shown by ν_3 , ν_4 (ClO₄) splittings [26, 27]. Each of these fundamental vibrational modes appears as triply split in the spectra of the Cr³⁺, Mn²⁺, Co²⁺ and Zn²⁺ complexes, which seem to contain both ionic ClO_4^- (T_d symmetry) and unidentate coordinated -OClO3 ligands (C3v symmetry); whereas in the spectra of the Ni²⁺ and Cu²⁺ complexes, v_3 and $v_4(ClO_4)$ are split into only two components, presumably due to the exclusive presence of coordinated $-OClO_3$ [13, 26, 27]. The complexes involving coordinated EtOH (M = Cr^{3+} , Mn²⁺, Co²⁺, Ni²⁺, Zn²⁺) show the characteristic ν (OH) and δ (OH) bands at 3400-3330 and 1642-1633 cm⁻¹, respectively [28, 29]. The various C-H bending vibrational bands of ethanol at 1500–1000 cm⁻¹ [30] are, in most cases, masked by ligand and perchlorate absorptions. In some cases, EtOH bands are observed as shoulders of the split $\nu_3(ClO_4)$ absorptions (1041–1035 cm⁻¹), while in the 1420–1360 cm⁻¹ region, the overlap of the EtOH band at *ca* 1400 cm⁻¹ [30] with the A' im (R₃) and A' pym (19a) modes results in a single broad maximum (M = Cr³⁺, Mn²⁺, Co²⁺, Ni²⁺, Zn²⁺). This is not observed in the spectra of the EtOH-free Fe³⁺ and Cu²⁺ complexes, which exhibit two distinct maxima at 1415–1402 (A' im (R₃)) and 1370–1367 (A' pym (19a)) cm⁻¹.

Tentative metal-ligand band assignments at 500– 200 cm⁻¹ were based on previous far-ir studies of 3d metal complexes with purines [9–11, 14, 31] and diazines [32, 33], aromatic amine N-oxides [34–36], perchlorato [37] and ethanol [11, 38] ligands. These assignments (Table II) favour coordination number six for $M = Cr^{3+}$, Fe^{3+} , Co^{2+} and Ni^{2+} , five for $M = Mn^{2+}$ and Zn^{2+} and four for $M = Cu^{2+}$ [9–11, 13, 14, 31–38].

Electronic Spectral and Magnetic Data

These data are given in Table III. The main $\pi \rightarrow$ π^* transition bands of the ligand (231, 262.5 nm) [39] appear in most cases as split in the spectra of the metal complexes, showing an overall trend of being shifted to lower energies upon metal complex formation. A similar trend was observed during complex formation between adenine and Pt^{2+} [40]. The UV bands of the complexes in the region below 250 nm may also involve contribution from EtOH absorption [41]. An absorption band at 300-320 nm in the spectra of the new complexes is presumably due to the $n \rightarrow \pi^*$ transition of the ligand. The spectra of the paramagnetic metal complexes exhibit also strong metal-to-ligand charge-transfer bands, originating in the UV and trailing off into the visible region. Charge-transfer absorption of this type is quite common in 3d metal complexes with diazines [42], purines [9, 10] and aromatic amine N-oxides [43]. The spectra of the ligand and its metal complexes are also generally characterized by the presence of near-i.r. bands at 935-970 and 1345-1375 nm, which are due to vibrational overtones and combination modes of LH [31].

The d-d transition spectra of the Cr³⁺, Co²⁺ and Ni²⁺ complexes are compatible with low-symmetry hexacoordinated configurations [44]; band assignments, nm: M = Cr³⁺: ${}^{4}A_{2g}(F) \rightarrow {}^{4}T_{1g}(F)$ $462; \rightarrow {}^{4}T_{2g}(F) 550, 602, 650 (Dq = 1665 cm^{-1});$ M = Co²⁺: ${}^{4}T_{1g}(F) \rightarrow {}^{4}T_{1g}(P), {}^{4}A_{2g}(F) 468, 512;$ $\rightarrow {}^{4}T_{2g}(F) 1300; M = Ni^{2+}: {}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(P) 395;$ $\rightarrow {}^{3}T_{1g}(F) 625, 747; \rightarrow {}^{3}T_{2g}(F) 1025, 1265 (Dq = 873 cm^{-1}).$ The approximate Dq of 873 cm⁻¹, calculated for the Ni²⁺ complex is consistent with a NiN₂O₄ absorbing species, with the four oxygens corresponding to one N-oxide, one $-OClO_3$ and two EtOH ligands [6, 13, 31] Likewise, the Dq of 1665 cm⁻¹, calculated for the Cr³⁺ complex, seems to agree with a CrN₂O₄ absorbing species, with two $-OClO_3$ and two EtOH ligands in this case (*vide infra*) [21, 45] Regarding the Cu²⁺ complex, the occurrence of the split d-d band maxima at 617 and 660 nm can be attributed to a square-planar configuration, with adenine N(1)-oxide functioning as a bidentate bridging O,N-ligand [6, 13, 31]

The ambient temperature magnetic moment of the Cu²⁺ complex (1 68 μ B) is low for magnetically normal compounds of this metal ion Several binuclear Cu²⁺ complexes, involving quadruple adenine bridges, and exhibiting room temperature magnetic moments of $15-17 \mu B$, have been reported [11, 31, 46-49], these complexes show deviation from Curie-Weiss behaviour, due to antiferromagnetic exchange, even at relatively high temperatures [46-48] Hence, the magnetic behaviour of the new Cu²⁺ complex is suggestive of a binuclear structure with multiple adenine N(1)-oxide bridges The ambient temperature magnetic moments of the rest of the new complexes are generally normal for highspin $3d^3$, $3d^5$, $3d^7$ or $3d^8$ compounds Some of these complexes (M = Cr³⁺, Mn²⁺, Zn²⁺) seem to be monomeric, but other complexes ($M = Fe^{3+}$, Co^{2+} , N12+) are presumably bi- or poly-nuclear In the latter cases, the normal room temperature μ_{eff} values do not necessarily rule out polymeric configurations In fact, we have recently demonstrated that polymeric Co²⁺, Ni²⁺ and Cu²⁺ purine complexes, most probably involving single-bridged, chainlike -M-(purine)-M-(purine)- sequences, exhibit normal room temperature magnetic moments, but show clearcut evidence in favour of magnetic exchange interactions (significant μ_{eff} decreases with decreasing temperature, negative θ values, deviation from Curie-Weiss behaviour at low temperatures) when studied at 300-80 K [10] Studies of the temperature dependence of the paramagnetism of the new metal complexes are to be undertaken in the near future

Ligand Binding Sites and Likely Structures of the Complexes

As discussed in the preceding sections, some of the new metal complexes ($M = Fe^{3+}$, Co^{2+} , Ni^{2+} , Cu^{2+}) involve ligands binding through the O(1) oxygen, while in the Fe^{3+} complex part of the ligands appear to coordinate through the NH₂ nitrogen It is quite obvious that most common in the majority of the complexes investigated is binding of the ligand through a ring nitrogen, the imidazole N(7) and N(9) nitrogens are much more likely binding sites, relative to the pyrimidine N(3) nitrogen [16, 25, 50, 51] Regarding the two imidazole nitrogens, the most probable binding site of a purine ligand appears to be the ring nitrogen, which is protonated in the free ligand [50] Thus, in the case of free adenine the N(9) is protonated [50, 52], and the most common binding site of adenine is indeed N(9) [46-48] The protonation of free adH-NO at N(9) (1) is not unlikely, but this has not been established Hence, at this point, we have to go by the early evidence on this ligand, which seemed to tend to coordinate through N(7) rather than N(9) [2, 3]

The three new complexes that show some solubility in organic media and do not involve coordination of the ligand through either O(1) or the NH_2 nitrogen (M = Cr³⁺, Mn²⁺, Zn²⁺), are most probably monomeric, with imidazole nitrogenbonded adH-NO Most likely formulations are $[Cr(N_{1m})_2(OClO_3)_2(EtOH)_2](ClO_4)$ and $[M(N_{1m})_2$ - $(OClO_3)(EtOH)_2](ClO_4)$ (M = Mn, Zn, N_{1m} indicates the imidazole nitrogen-bonded unidentate adH-NO, im = 7 or 9, with im = 7 being more likely [2, 3]), on the basis of the overall evidence presented For the Cu²⁺ complex, a binuclear structure of the $[(O_3ClO)Cu(adH-NO)(ad-NO)_2Cu(OClO_3)]$ type, with triple ligand bridges (involving two anionic monodeprotonated and one neutral ligand) was previously proposed [12] When functioning as bidentate bridging ligands, the purines most commonly coordinate through either the N(3), N(9) [49, 50, 53] or the N(1), N(7)- [50, 54] sites However, examples of complexes with N(7), N(9)-bonded bidentate bridging purines are also known [25, 51, 55], and it is, therefore, not inconceivable that the N(1), N(9)combination is possible. Since one of the binding sites of the bridging N-oxide ligands in the Cu^{2+} complex is the O(1) oxygen, the preceding structural type can be written as $[(O_3ClO)Cu(O_1 N_{1m})_3Cu(OClO_3)]$, where $O_1 N_{1m}$ indicates the binding sites of the bridging ligand, and im = 7 is again more likely than im = 9

The remaining three complexes ($M = Fe^{3+}$, Co^{2+} , N1²⁺) are apparently bi- or poly-nuclear Since their ambient temperature magnetic moments are normal, it is considered as more probable that they involve single rather than multiple adenine N(1)-oxide bridges [9, 10], as the latter type of bridging would be expected to cause somewhat low magnetic moment values even at room temperature, at least for Fe³⁺ [56, 57] Whereas, in the case of single-bridged chainlike polymeric complexes, with large separations between adjacent metal ions, the effects of spinspin coupling would not be obvious for $M = Fe^{3+}$. Co^{2+} or N1²⁺, and possibly even Cu^{2+} [9, 10, 56, 58, 59] At lower temperatures, these single-bridged complexes would be, of course, expected to show deviations from Curie–Weiss behaviour [10, 58, 59] On the basis of the preceding discussion, and the fact that only part of the adenine N(1)-oxide ligands are coordinated through O(1) in the Co²⁺ and Ni²⁺ complexes, these compounds may be formulated as linear polymers of types (2) and (3), with one unidentate, imidazole nitrogen-bonded and one bridging bidentate, N(1)-O oxygen- and imidazole nitrogen-bonded ligand per metal ion. As far as the Fe³⁺ complex is concerned, the i.r. evidence seems to favour a structure involving two types of bidentate coordinated adenine N(1)-oxide ligands, viz., some chelating through the N(1)-O oxygen and the NH_2 nitrogen [3-6] and some bridging, N(1)-O oxygen and imidazole nitrogen-bonded, as shown in (4). The fact that in the Ni²⁺ and Fe³⁺ complexes, one ligand per metal ion is anionic and the rest (one for $M = Ni^{2+}$, two for $M = Fe^{3+}$) are neutral (Table 1), might be taken as suggesting that the bridging ligand in structural types (3) and (4) is the anionic monodeprotonated species.

In conclusion, in a series of new complexes of adenine N(1)-oxide with 3d metal(II) and (III) perchlorates, striking differences, as far as the binding site or sites of the ligands and the likely structural types of the complexes are concerned, were observed with metal ion variation. Some of these differences may be due to the presence of anionic ad-NO⁻ and EtOH ligands in some new complexes, in addition to the neutral adH-NO ligands, which are present in all the complexes reported. However, differences were observed even between species with the same stoichiometries, *i.e.*, the monomeric Mn^{2+} and Zn^{2+} complexes vs. the polymeric Co²⁺ analogue. Hence, it appears that, as is the case with the parent base [11, 25, 31, 46–51, 53, 54], the binding sites of adenine N(1)-oxide with a given metal salt and the structural type of the resulting complex are not easily predictable. Regarding the various adenine N(1)oxide sites used for binding in the complexes herein reported, our work seems to confirm previous conclusions from studies of metal complexes with adenine and adenosine N(1)-oxides [2-8]. The ligand under study seems to bind exclusively through an imidazole nitrogen (most probably N(7)), when functioning as unidentate, terminal. It may also act as bidentate, chelating, O(1), N(6)-bonded or bidentate, bridging, O(1), N(im)-bonded.

References

- 1 A. N. Speca, C. M. Mikulski, F. J. Iaconianni, L. L. Pytlewski and N. M. Karayannis, Abstracts, the Joint Am. Chem. Soc./Chem. Soc. Japan Chem. Congress, Honolulu, Hawaii, April 1-6, 1979; No. INOR 33; C. M. Mikulski, R. DePrince, T. B. Tran and N. M. Karayannis, Proceedings, XXI ICCC Toulouse, France, July 7-11, 1980, p. 422.
- 2 R. Weiss and H. Venner, Hoppe Seyler's Z. physiol. Chem., 350, 230 (1969).
- 3 D. D. Perrin, J. Am. Chem. Soc., 82, 5642 (1960).
- 4 H. Sigel and H. Brintzinger, Helv. Chim, Acta, 47, 1701 (1964); H. Sigel and B. Prijs, ibid., 50, 2357 (1967).
- 5 H. Sigel, Helv. Chim. Acta, 48, 1519 (1965).
- 6 N. M. Karayannis, L. L. Pytlewski and C. M. Mikulski, Coord. Chem. Rev., 11, 93 (1973); N. M. Karayannis, A. N. Speca, D. E. Chasan and L. L.
- Pytlweski, ibid., 20, 37 (1976). 7 N. Hadjiliadis and T. Theophanides, Inorg. Chim. Acta,
- 16, 67 (1976). 8 Pi-Chiang Kong and T. Theophanides, Inorg. Chem., 13, 1981 (1974).
- 9 A. N. Speca, C. M. Mikulski, F. J. Iaconianni, L. L. Pytlewski and N. M. Karayannis, Inorg. Chim. Acta, 46, 235 (1980).
- 10 A. N. Speca, C. M. Mikulski, F. J. Iaconianni, L. L. Pytlewski and N. M. Karayannis, Inorg. Chem., 19, 3491 (1980).
- 11 A. N. Speca, C. M. Mikulski, F. J. Iaconianni, L L. Pytlewski and N. M. Karayannis, Inorg. Chim. Acta, 37, L551 (1979).
- 12 G. B. Brown, K. Sugiura and R. M. Cresswell, Cancer Res., 25, 986 (1965); K. Sugiura and G. B. Brown, ibid., 27, 925 (1967); M. N. Teller, G. Stohr and H. Dienst, ibid., 30, 179 (1970); K. Sugiura, M. N. Teller, J. C. Parham and G. B. Brown,

ibid., 30, 184 (1970).

- 13 C. M. Mikulski, F. J. Iaconianni, L. L. Pytlewski, A. N. Speca and N. M. Karayannis, Inorg. Chim. Acta, 46, L47 (1980).
- 14 N. M. Karayannis, L. L. Pytlewski and M. M. Labes, Inorg. Chim. Acta, 3, 415 (1969); N. M. Karayannis, C. M. Mikulski, M. J. Strocko, L. L. Pytlewski and M. M. Labes, ibid., 8, 91 (1974).
- 15 N. B. Behrens, D. M. L. Goodgame and Z. Warnke, Inorg. Chim. Acta, 31, 257 (1978).
- 16 A. Lautié and A. Novak, J. Chim. Phys. Physicochim. Biol., 65, 1359 (1968); 68, 1492 (1971).
- 17 J. Brigando and D. Colaitis, Bull. Soc. Chim. France, 3445, 3449 (1969).
- 18 T. Fujita and T. Sakaguchi, Chem. Pharm. Bull., 25, 1055, 1694, 2419 (1977); T. Sakaguchi and M. Ishino, Nippon Kagaku Kaishi,
- 1480 (1974). 19 R. H. Wiley and S. C. Slaymaker, J. Am. Chem. Soc., 79, 2233 (1957).

- H. Shindo, Chem. Pharm. Bull., 8, 33 (1960);
 N. Kulevsky and R. G. Severson, Jr., Spectrochim. Acta, 26A, 2227 (1970).
- 21 D. E. Chasan, L. L. Pytlewski, C. Owens and N. M. Karayannis, *Inorg. Chim. Acta*, 24, 219 (1977);
- J. Inorg. Nucl. Chem., 39, 1137 (1977).
 22 L. C. Nathan and R. O. Ragsdale, Inorg. Chim. Acta, 10, 177 (1974).
- 23 B. T. Khan and A. Mehmood, J. Inorg. Nucl. Chem., 40, 1938 (1978).
- 24 R. G. Inskeep, J. Inorg. Nucl. Chem., 24, 763 (1962);
 A. A. Schilt and R. C. Taylor, *ibid.*, 9, 211 (1959).
- 25 L. Prizant, M. J. Olivier, A. L. Beauchamp and R. Rivest, J. Am. Chem. Soc., 101, 2765 (1979).
- 26 B. J. Hathaway and A. E. Underhill, J. Chem. Soc., 3091 (1961);
 B. J. Hathaway, D. G. Holah and M. Hudson, *ibid.*,
- 4586 (1963).
- 27 A. E. Wickenden and R. A. Krause, *Inorg. Chem.*, 4, 404 (1965);
 S. F. Pavkovic and D. W. Meek, *ibid.*, 4, 1091 (1965);
- M. E. Farago, J. M. James and V. C. G. Trew, J. Chem. Soc. A, 820 (1967).
- 28 V. Imhof and R. S. Drago, Inorg. Chem., 4, 427 (1965).
- 29 P. W. N. M. van Leeuwen, Recl. Trav. Chim. Pays-Bas, 86, 247 (1967);
 A. D. van Ingen Schenau, W. L. Groeneveld and J.
- Reedijk, *ibid.*, 91, 88 (1972).
- 30 C. Tanaka, Nippon Kagaku Zasshi, 83, 792 (1962);
 G. M. Barrow, J. Chem. Phys., 20, 1739 (1952).
 21 M. Guidelana and L. Baddille, Bad. Tran. Cl.
- 31 M. A. Guichelaar and J. Reedijk, Recl. Trav. Chim. Pays-Bas, 97, 275 (1978).
- 32 J. R. Ferraro, J. Zipper and W. Wozniak, Appl. Spectroscopy, 23, 160 (1969).
- 33 M. Goldstein, F. B. Taylor and W. D. Unsworth, J. Chem. Soc., Dalton Trans., 418 (1972);
- M. Goldstein, J. Inorg. Nucl. Chem., 37, 567 (1975).
 34 A. D. van Ingen Schenau, W. L. Groeneveld and J. Reedijk, Spectrochim. Acta, 30A, 213 (1974);
 A. D. van Ingen Schenau, C. Romers, D. Knetsch and W. L. Groeneveld, *ibid.*, 33A, 859 (1977).
- 35 A. T. Hutton and D. A. Thornton, J. Mol. Struct., 39, 33 (1977);
 - T. P. E. Auf der Heyde, C. S. Green, A. T. Hutton and D. A. Thornton, Spectroscopy Lett., 13, 31 (1980).
- 36 N. M. Karayannis, C. M. Mikulski, M. J. Strocko, L. L. Pytlewski and M. M. Labes, J. Inorg. Nucl. Chem., 33, 3185 (1971).
- 37 J. R. Ferraro and A. Walker, J. Chem. Phys., 42, 1273, 1278 (1965).
- 38 C. M. Mikulski, L. S. Gelfand, L. L. Pytlewski, J. S. Skryantz and N. M. Karayannis, *Inorg. Chim. Acta*, 21, 9 (1977); D. Knetsch, *Ph.D. Thesis*, Leiden University, The Nether-
 - D. Knetsch, Ph.D. Thesis, Leiden University, The Netherlands (1976).
- 39 M. A. Stevens, D. I. Magrath, H. W. Smith and G. B. Brown, J. Am. Chem. Soc., 80, 2755 (1958);
 M. A. Stevens and G. B. Brown, *ibid.*, 80, 2759 (1958).
- 40 A. I. Stetsenko, E. S. Dmitriyeva and K. I. Yakovlev,

J. Clin. Hematol. Oncol., 7, 522 (1977);

- A. I. Stetsenko and E. S. Dmitriyeva, Koord. Khim., 3, 1240 (1977).
- J. Bielecki and V. Henri, Ber. deutsch. Chem. Ges., 45, 2819 (1912);
 T. R. Hogness, F. P. Zscheile Jr., and A. E. Sidwell, Jr.,
- J. Phys. Chem., 41, 379 (1937). 42 A. B. P. Lever, J. Lewis and R. S. Nyholm, J. Chem. Soc., 1235 (1962); 3156, 5042 (1963); 1187, 4764 (1964).
- 43 W. Byers, B. Fa-Chun Chou, A. B. P. Lever and R. V. Parish, J. Am. Chem. Soc., 91, 1329 (1969).
- 44 W. Byers, A. B. P. Lever and R. V. Parish, Inorg. Chem., 7, 1835 (1968).
- 45 A. N. Speca, L. L. Pytlewski, C. Owens and N. M. Karayannis, J. Inorg. Nucl. Chem., 38, 1119 (1976).
- 46 K. A. Price and D. M. L. Goodgame, *Nature*, 220, 783 (1968);
- R. W. Duerst, S. J. Baum and G. F. Kokoszka, *ibid.*, 222, 665 (1969);

M. V. Hanson, C. B. Smith, G. D. Simpson and G. O. Carlisle, Inorg. Nucl. Chem. Lett., 11, 225 (1975).

47 B. Jeżowska-Trzebiatowska, H. Kozłowski and A. Antonów, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 22, 31 (1974); T. Asakawa M. Jacus K. Ham and M. Kuba, Bull. Cham.

T. Asakawa, M. Inoue, K. Hara and M. Kubo, Bull. Chem. Soc. Japan, 45, 1054 (1971).

- 48 D. B. Brown, J. W. Hall, H. M. Helis, E. G. Walton, D. J. Hodgson and W. E. Hatfield, *Inorg. Chem.*, 16, 2675 (1977).
- 49 A. Terzis, A. L. Beauchamp and R. Rivest, Inorg. Chem., 12, 1166 (1973).
- 50 D. J. Hodgson, Progress in Inorg. Chem., 23, 211 (1977).
- 51 L. Prizant, M. J. Olivier, J.-P. Charland, R. Rivest and A. L. Beauchamp, Proceedings, XXI ICCC, Toulouse, France, July 7-11, 1980, p. 428.
- 52 B. Pullman and A. Pullman, 'Quantum Biochemistry', Interscience, New York (1963).
- 53 E. Sletten, Acta Crystallogr., B25, 1480 (1969);
 P. de Meester and A. C. Skapski, J. Chem. Soc., Dalton Trans., 2400 (1972);
 424, 1596 (1973).
- 54 P. de Messter, D. M. L. Goodgame, A. C. Skapski and Z. Warnke, *Biochim. Biophys. Acta*, 324, 301 (1973); C. J. L. Lock, R. A. Speranzini, G. Turner and J. Powell, *J. Am. Chem. Soc.*, 98, 7865 (1976).
- 55 N. H. Agnew, T. G. Appleton, J. R. Hall, G. F. Kilmister and I. J. McMahon, Chem. Commun., 324 (1979).
- 56 D. J. Hodgson, Progress in Inorg. Chem., 19, 173 (1975).
- 57 C.-H. S. Wu, G. R. Rossman, H. B. Gray, G. S. Hammond and H. J. Schugar, *Inorg. Chem.*, 11, 990 (1972).
- 58 G. W. Inman, Jr., and W. E. Hatfield, *Inorg. Chem.*, 11, 3085 (1972);
 H. W. Richardson, W. E. Hatfield, H. J. Stoklosa and J.
- R. Wasson, *ibid.*, 12, 2051 (1973).
- 59 M. Inoue and M. Kubo, Coord. Chem. Rev., 21, 1 (1976); Idem, J. Coord. Chem., 6, 157 (1977).